A Gradually Distilled CNN for SAR Target Recognition

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pose Estimation for SAR Automatic Target Recognition

This paper explores statistically pose estimation in SAR ATR. Based on our proposed method of maximizing mutual information, further experiments are conducted by using the new MSTAR/ IU Database. Different pose estimator topologies and training criteria are also employed. Experimental results show that our proposed method reduces the average pose estimation error to within 10 degrees of the tru...

متن کامل

Kernel generalized neighbor discriminant embedding for SAR automatic target recognition

In this paper, we propose a new supervised feature extraction algorithm in synthetic aperture radar automatic target recognition (SAR ATR), called generalized neighbor discriminant embedding (GNDE). Based on manifold learning, GNDE integrates class and neighborhood information to enhance discriminative power of extracted feature. Besides, the kernelized counterpart of this algorithm is also pro...

متن کامل

Joint Embedding and Classification for SAR Target Recognition

Deep learning can be an effective and efficient means to automatically detect and classify targets in synthetic aperture radar (SAR) images, but it is critical for trained neural networks to be robust to variations that exist between training and test environments. The layers in a neural network can be understood to be successive transformations of an input image into embedded feature represent...

متن کامل

Target Recognition for Multi-aspect Sar Images with Fusion Strategies

Two fusion strategies for target recognition using multiaspect synthetic aperture radar (SAR) images are presented for recognizing ground vehicles in MSTAR database. Due to radar crosssection variability, the ability to discriminate between targets varies greatly with target aspect. Multi-aspect images of a given target are used to support recognition. In this paper, two fusion strategies for t...

متن کامل

A Multi-scale Local Phase Quantization plus Biomimetic Pattern Recognition Method for Sar Automatic Target Recognition

Synthetic aperture radar (SAR) automatic target recognition (ATR) has been receiving more and more attention in the past two decades. But the problem of how to overcome SAR target ambiguities and azimuth angle variations has still left unsolved. In this paper, a multi-scale local phase quantization plus biomimetic pattern recognition (BPR) method is presented to solve these two difficulties. By...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2019

ISSN: 2169-3536

DOI: 10.1109/access.2019.2906564